Package index
-
install_binaries()
- Download, unzip, check permissions, and test the bioregion's binary files
-
mat_to_net()
- Create a data.frame from a contingency table
-
net_to_mat()
- Create a contingency table from a data.frame
-
site_species_subset()
- Extract a subset of sites or species from a
bioregion.clusters
object
-
similarity()
- Compute similarity metrics between sites based on species composition
-
similarity_to_dissimilarity()
- Convert similarity metrics to dissimilarity metrics
-
dissimilarity()
- Compute dissimilarity metrics (beta-diversity) between sites based on species composition
-
dissimilarity_to_similarity()
- Convert dissimilarity metrics to similarity metrics
-
betapart_to_bioregion()
- Convert betapart dissimilarity to bioregion dissimilarity
-
hclu_hierarclust()
- Hierarchical Clustering Based on Dissimilarity or Beta-Diversity
-
cut_tree()
- Cut a hierarchical tree
-
hclu_diana()
- Divisive hierarchical clustering based on dissimilarity or beta-diversity
-
hclu_optics()
- OPTICS hierarchical clustering algorithm
-
nhclu_clara()
- Non-hierarchical clustering: CLARA
-
nhclu_clarans()
- Non-hierarchical clustering: CLARANS
-
nhclu_dbscan()
- Non-hierarchical clustering: DBSCAN
-
nhclu_kmeans()
- Non-hierarchical clustering: K-means analysis
-
nhclu_pam()
- Non-hierarchical clustering: Partitioning Around Medoids
-
nhclu_affprop()
- Non-hierarchical clustering: Affinity Propagation
-
netclu_beckett()
- Community structure detection in weighted bipartite networks via modularity optimization
-
netclu_infomap()
- Infomap community finding
-
netclu_greedy()
- Community structure detection via greedy optimization of modularity
-
netclu_labelprop()
- Finding communities based on propagating labels
-
netclu_leiden()
- Finding communities using the Leiden algorithm
-
netclu_leadingeigen()
- Finding communities based on the leading eigenvector of the community matrix
-
netclu_louvain()
- Louvain community finding
-
netclu_oslom()
- OsloM Community Finding
-
netclu_walktrap()
- Community Structure Detection via Short Random Walks
-
site_species_metrics()
- Calculate contribution metrics of sites and species
-
bioregion_metrics()
- Calculate contribution metrics for bioregions
-
bioregionalization_metrics()
- Calculate metrics for one or several partitions
-
find_optimal_n()
- Search for an optimal number of clusters in a list of partitions
-
compare_bioregionalizations()
- Compare cluster memberships among multiple bioregionalizations
-
map_bioregions()
- Create a map of bioregions
-
fishdf
- Spatial distribution of fish in Europe (data.frame)
-
fishmat
- Spatial distribution of fish in Europe (co-occurrence matrix)
-
fishsf
- Spatial distribution of fish in Europe
-
vegedf
- Spatial distribution of Mediterranean vegetation (data.frame)
-
vegemat
- Spatial distribution of Mediterranean vegetation (co-occurrence matrix)
-
vegesf
- Spatial distribution of Mediterranean vegetation (spatial grid)