This function calculates the number of sites per bioregion, as well as the the number of species these sites have, the number of endemic species and the proportion of endemism.
Arguments
- cluster_object
a
bioregion.clusters
object or adata.frame
or a list ofdata.frame
containing multiple partitions. At least two partitions are required. If a list ofdata.frame
is provided, they should all have the same number of rows (i.e., same items in the clustering for all partitions).- comat
a co-occurrence
matrix
with sites as rows and species as columns.- map
a spatial
sf data.frame
with sites and bioregions. It is the output of the functionmap_bioregions
.NULL
by default.- col_bioregion
an
integer
specifying the column position of the bioregion.
Author
Pierre Denelle (pierre.denelle@gmail.com)
Boris Leroy (leroy.boris@gmail.com)
Maxime Lenormand (maxime.lenormand@inrae.fr)
Examples
comat_1 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
prob = 1/1:1001), 10, 12)
rownames(comat_1) <- paste0("Site", 1:10)
colnames(comat_1) <- paste0("Species", 1:12)
comat_1 <- cbind(comat_1,
matrix(0, 10, 8,
dimnames = list(paste0("Site", 1:10),
paste0("Species", 13:20))))
comat_2 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
prob = 1/1:1001), 10, 12)
rownames(comat_2) <- paste0("Site", 11:20)
colnames(comat_2) <- paste0("Species", 9:20)
comat_2 <- cbind(matrix(0, 10, 8,
dimnames = list(paste0("Site", 11:20),
paste0("Species", 1:8))),
comat_2)
comat <- rbind(comat_1, comat_2)
dissim <- dissimilarity(comat, metric = "Simpson")
clust1 <- nhclu_kmeans(dissim, n_clust = 3, index = "Simpson")
net <- similarity(comat, metric = "Simpson")
com <- netclu_greedy(net)
bioregion_metrics(cluster_object = clust1, comat = comat)
#> Bioregion Site_number Species_number Endemics Percentage_Endemic
#> 1 2 10 12 8 66.66667
#> 2 1 8 12 0 0.00000
#> 3 3 2 11 0 0.00000
# Spatial coherence
vegedissim <- dissimilarity(vegemat)
hclu <- nhclu_kmeans(dissimilarity = vegedissim, n_clust = 4)
vegemap <- map_bioregions(hclu, vegesf, write_clusters = TRUE, plot = FALSE)
bioregion_metrics(cluster_object = hclu, comat = vegemat, map = vegemap,
col_bioregion = 2)
#> Bioregion Site_number Species_number Endemics Percentage_Endemic Coherence
#> 1 2 128 2527 90 3.561535 49.21875
#> 2 4 169 2983 45 1.508548 56.21302
#> 3 3 298 2936 56 1.907357 98.99329
#> 4 1 120 2262 67 2.961981 79.16667