This function calculates the number of sites per bioregion, as well as the number of species these sites have, the number of endemic species, and the proportion of endemism.
Arguments
- cluster_object
A
bioregion.clusters
object.- comat
A co-occurrence
matrix
with sites as rows and species as columns.- map
A spatial
sf data.frame
with sites and bioregions. It is the output of the functionmap_bioregions
.NULL
by default.- col_bioregion
An
integer
specifying the column position of the bioregion.
See also
For more details illustrated with a practical example, see the vignette: https://biorgeo.github.io/bioregion/articles/a5_3_summary_metrics.html.
Associated functions: site_species_metrics bioregionalization_metrics
Author
Pierre Denelle (pierre.denelle@gmail.com)
Boris Leroy (leroy.boris@gmail.com)
Maxime Lenormand (maxime.lenormand@inrae.fr)
Examples
comat_1 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
prob = 1/1:1001), 10, 12)
rownames(comat_1) <- paste0("Site", 1:10)
colnames(comat_1) <- paste0("Species", 1:12)
comat_1 <- cbind(comat_1,
matrix(0, 10, 8,
dimnames = list(paste0("Site", 1:10),
paste0("Species", 13:20))))
comat_2 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
prob = 1/1:1001), 10, 12)
rownames(comat_2) <- paste0("Site", 11:20)
colnames(comat_2) <- paste0("Species", 9:20)
comat_2 <- cbind(matrix(0, 10, 8,
dimnames = list(paste0("Site", 11:20),
paste0("Species", 1:8))),
comat_2)
comat <- rbind(comat_1, comat_2)
dissim <- dissimilarity(comat, metric = "Simpson")
clust1 <- nhclu_kmeans(dissim, n_clust = 3, index = "Simpson")
net <- similarity(comat, metric = "Simpson")
com <- netclu_greedy(net)
bioregion_metrics(cluster_object = clust1, comat = comat)
#> Bioregion Site_number Species_number Endemics Percentage_Endemic
#> 1 2 10 12 8 66.66667
#> 2 1 8 12 0 0.00000
#> 3 3 2 11 0 0.00000
# Spatial coherence
vegedissim <- dissimilarity(vegemat)
hclu <- nhclu_kmeans(dissimilarity = vegedissim, n_clust = 4)
vegemap <- map_bioregions(hclu, vegesf, write_clusters = TRUE, plot = FALSE)
bioregion_metrics(cluster_object = hclu, comat = vegemat, map = vegemap,
col_bioregion = 2)
#> Bioregion Site_number Species_number Endemics Percentage_Endemic Coherence
#> 1 2 128 2527 90 3.561535 49.21875
#> 2 4 169 2983 45 1.508548 56.21302
#> 3 3 298 2936 56 1.907357 98.99329
#> 4 1 120 2262 67 2.961981 79.16667