Compare cluster memberships among multiple bioregionalizations
Source:R/compare_bioregionalizations.R
compare_bioregionalizations.Rd
This function computes pairwise comparisons for several
bioregionalizations, usually outputs from netclu_
, hclu_
, or nhclu_
functions. It also provides the confusion matrix from pairwise comparisons,
enabling the user to compute additional comparison metrics.
Usage
compare_bioregionalizations(
cluster_object,
indices = c("rand", "jaccard"),
cor_frequency = FALSE,
store_pairwise_membership = TRUE,
store_confusion_matrix = TRUE
)
Arguments
- cluster_object
A
data.frame
object where each row corresponds to a site, and each column to a bioregionalization.- indices
NULL
orcharacter
. Indices to compute for the pairwise comparison of bioregionalizations. Currently available metrics are"rand"
and"jaccard"
.- cor_frequency
A
boolean
. IfTRUE
, computes the correlation between each bioregionalization and the total frequency of co-membership of items across all bioregionalizations. This is useful for identifying which bioregionalization(s) is(are) most representative of all computed bioregionalizations.- store_pairwise_membership
A
boolean
. IfTRUE
, stores the pairwise membership of items in the output object.- store_confusion_matrix
A
boolean
. IfTRUE
, stores the confusion matrices of pairwise bioregionalization comparisons in the output object.
Value
A list
containing 4 to 7 elements:
args: A
list
of user-provided arguments.inputs: A
list
containing information on the input bioregionalizations, such as the number of items clustered.pairwise_membership (optional): If
store_pairwise_membership = TRUE
, aboolean matrix
whereTRUE
indicates two items are in the same cluster, andFALSE
indicates they are not.freq_item_pw_membership: A
numeric vector
containing the number of times each item pair is clustered together, corresponding to the sum of rows inpairwise_membership
.bioregionalization_freq_cor (optional): If
cor_frequency = TRUE
, anumeric vector
of correlations between individual bioregionalizations and the total frequency of pairwise membership.confusion_matrix (optional): If
store_confusion_matrix = TRUE
, alist
of confusion matrices for each pair of bioregionalizations.bioregionalization_comparison: A
data.frame
containing comparison results, where the first column indicates the bioregionalizations compared, and the remaining columns contain the requestedindices
.
Details
This function operates in two main steps:
Within each bioregionalization, the function compares all pairs of items and documents whether they are clustered together (
TRUE
) or separately (FALSE
). For example, if site 1 and site 2 are clustered in the same cluster in bioregionalization 1, their pairwise membershipsite1_site2
will beTRUE
. This output is stored in thepairwise_membership
slot ifstore_pairwise_membership = TRUE
.Across all bioregionalizations, the function compares their pairwise memberships to determine similarity. For each pair of bioregionalizations, it computes a confusion matrix with the following elements:
a
: Number of item pairs grouped in both bioregionalizations.b
: Number of item pairs grouped in the first but not in the second bioregionalization.c
: Number of item pairs grouped in the second but not in the first bioregionalization.d
: Number of item pairs not grouped in either bioregionalization.
The confusion matrix is stored in confusion_matrix
if
store_confusion_matrix = TRUE
.
Based on these confusion matrices, various indices can be computed to measure agreement among bioregionalizations. The currently implemented indices are:
Rand index:
(a + d) / (a + b + c + d)
Measures agreement by considering both grouped and ungrouped item pairs.Jaccard index:
a / (a + b + c)
Measures agreement based only on grouped item pairs.
These indices are complementary: the Jaccard index evaluates clustering similarity, while the Rand index considers both clustering and separation. For example, if two bioregionalizations never group the same pairs, their Jaccard index will be 0, but their Rand index may be > 0 due to ungrouped pairs.
Users can compute additional indices manually using the list of confusion matrices.
To identify which bioregionalization is most representative of the others,
the function can compute the correlation between the pairwise membership of
each bioregionalization and the total frequency of pairwise membership across
all bioregionalizations. This is enabled by setting cor_frequency = TRUE
.
See also
For more details illustrated with a practical example, see the vignette: https://biorgeo.github.io/bioregion/articles/a5_2_compare_bioregionalizations.html.
Associated functions: bioregionalization_metrics
Author
Boris Leroy (leroy.boris@gmail.com)
Maxime Lenormand (maxime.lenormand@inrae.fr)
Pierre Denelle (pierre.denelle@gmail.com)
Examples
# We here compare three different bioregionalizations
comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)
dissim <- dissimilarity(comat, metric = "Simpson")
bioregion1 <- nhclu_kmeans(dissim, n_clust = 3, index = "Simpson")
net <- similarity(comat, metric = "Simpson")
bioregion2 <- netclu_greedy(net)
bioregion3 <- netclu_walktrap(net)
# Make one single data.frame with the bioregionalizations to compare
compare_df <- merge(bioregion1$clusters, bioregion2$clusters, by = "ID")
compare_df <- merge(compare_df, bioregion3$clusters, by = "ID")
colnames(compare_df) <- c("Site", "Hclu", "Greedy", "Walktrap")
rownames(compare_df) <- compare_df$Site
compare_df <- compare_df[, c("Hclu", "Greedy", "Walktrap")]
# Running the function
compare_bioregionalizations(compare_df)
#> 2025-01-17 10:28:45.135108 - Computing pairwise membership comparisons for each bioregionalization...
#> 2025-01-17 10:28:45.136667 - Comparing memberships among bioregionalizations...
#> 2025-01-17 10:28:45.137351 - Computing Rand index...
#> 2025-01-17 10:28:45.137721 - Computing Jaccard index...
#> $args
#> $args$indices
#> [1] "rand" "jaccard"
#>
#> $args$cor_frequency
#> [1] FALSE
#>
#> $args$store_pairwise_membership
#> [1] TRUE
#>
#> $args$store_confusion_matrix
#> [1] TRUE
#>
#>
#> $inputs
#> number_items number_bioregionalizations
#> 20 3
#>
#> $pairwise_membership
#> Hclu Greedy Walktrap
#> 1_2 FALSE TRUE TRUE
#> 1_3 FALSE TRUE TRUE
#> 1_4 FALSE FALSE TRUE
#> 1_5 FALSE TRUE TRUE
#> 1_6 FALSE TRUE TRUE
#> 1_7 FALSE TRUE TRUE
#> 1_8 FALSE TRUE TRUE
#> 1_9 FALSE TRUE TRUE
#> 1_10 TRUE TRUE TRUE
#> 1_11 TRUE TRUE TRUE
#> 1_12 FALSE TRUE TRUE
#> 1_13 TRUE TRUE TRUE
#> 1_14 FALSE TRUE TRUE
#> 1_15 FALSE TRUE TRUE
#> 1_16 FALSE TRUE TRUE
#> 1_17 FALSE TRUE TRUE
#> 1_18 TRUE TRUE TRUE
#> 1_19 TRUE TRUE TRUE
#> 1_20 TRUE TRUE TRUE
#> 2_3 FALSE TRUE TRUE
#> 2_4 TRUE FALSE TRUE
#> 2_5 FALSE TRUE TRUE
#> 2_6 FALSE TRUE TRUE
#> 2_7 TRUE TRUE TRUE
#> 2_8 FALSE TRUE TRUE
#> 2_9 TRUE TRUE TRUE
#> 2_10 FALSE TRUE TRUE
#> 2_11 FALSE TRUE TRUE
#> 2_12 FALSE TRUE TRUE
#> 2_13 FALSE TRUE TRUE
#> 2_14 FALSE TRUE TRUE
#> 2_15 TRUE TRUE TRUE
#> 2_16 FALSE TRUE TRUE
#> 2_17 FALSE TRUE TRUE
#> 2_18 FALSE TRUE TRUE
#> 2_19 FALSE TRUE TRUE
#> 2_20 FALSE TRUE TRUE
#> 3_4 FALSE FALSE TRUE
#> 3_5 TRUE TRUE TRUE
#> 3_6 TRUE TRUE TRUE
#> 3_7 FALSE TRUE TRUE
#> 3_8 TRUE TRUE TRUE
#> 3_9 FALSE TRUE TRUE
#> 3_10 FALSE TRUE TRUE
#> 3_11 FALSE TRUE TRUE
#> 3_12 TRUE TRUE TRUE
#> 3_13 FALSE TRUE TRUE
#> 3_14 TRUE TRUE TRUE
#> 3_15 FALSE TRUE TRUE
#> 3_16 TRUE TRUE TRUE
#> 3_17 TRUE TRUE TRUE
#> 3_18 FALSE TRUE TRUE
#> 3_19 FALSE TRUE TRUE
#> 3_20 FALSE TRUE TRUE
#> 4_5 FALSE FALSE TRUE
#> 4_6 FALSE FALSE TRUE
#> 4_7 TRUE FALSE TRUE
#> 4_8 FALSE FALSE TRUE
#> 4_9 TRUE FALSE TRUE
#> 4_10 FALSE FALSE TRUE
#> 4_11 FALSE FALSE TRUE
#> 4_12 FALSE FALSE TRUE
#> 4_13 FALSE FALSE TRUE
#> 4_14 FALSE FALSE TRUE
#> 4_15 TRUE FALSE TRUE
#> 4_16 FALSE FALSE TRUE
#> 4_17 FALSE FALSE TRUE
#> 4_18 FALSE FALSE TRUE
#> 4_19 FALSE FALSE TRUE
#> 4_20 FALSE FALSE TRUE
#> 5_6 TRUE TRUE TRUE
#> 5_7 FALSE TRUE TRUE
#> 5_8 TRUE TRUE TRUE
#> 5_9 FALSE TRUE TRUE
#> 5_10 FALSE TRUE TRUE
#> 5_11 FALSE TRUE TRUE
#> 5_12 TRUE TRUE TRUE
#> 5_13 FALSE TRUE TRUE
#> 5_14 TRUE TRUE TRUE
#> 5_15 FALSE TRUE TRUE
#> 5_16 TRUE TRUE TRUE
#> 5_17 TRUE TRUE TRUE
#> 5_18 FALSE TRUE TRUE
#> 5_19 FALSE TRUE TRUE
#> 5_20 FALSE TRUE TRUE
#> 6_7 FALSE TRUE TRUE
#> 6_8 TRUE TRUE TRUE
#> 6_9 FALSE TRUE TRUE
#> 6_10 FALSE TRUE TRUE
#> 6_11 FALSE TRUE TRUE
#> 6_12 TRUE TRUE TRUE
#> 6_13 FALSE TRUE TRUE
#> 6_14 TRUE TRUE TRUE
#> 6_15 FALSE TRUE TRUE
#> 6_16 TRUE TRUE TRUE
#> 6_17 TRUE TRUE TRUE
#> 6_18 FALSE TRUE TRUE
#> 6_19 FALSE TRUE TRUE
#> 6_20 FALSE TRUE TRUE
#> 7_8 FALSE TRUE TRUE
#> 7_9 TRUE TRUE TRUE
#> 7_10 FALSE TRUE TRUE
#> 7_11 FALSE TRUE TRUE
#> 7_12 FALSE TRUE TRUE
#> 7_13 FALSE TRUE TRUE
#> 7_14 FALSE TRUE TRUE
#> 7_15 TRUE TRUE TRUE
#> 7_16 FALSE TRUE TRUE
#> 7_17 FALSE TRUE TRUE
#> 7_18 FALSE TRUE TRUE
#> 7_19 FALSE TRUE TRUE
#> 7_20 FALSE TRUE TRUE
#> 8_9 FALSE TRUE TRUE
#> 8_10 FALSE TRUE TRUE
#> 8_11 FALSE TRUE TRUE
#> 8_12 TRUE TRUE TRUE
#> 8_13 FALSE TRUE TRUE
#> 8_14 TRUE TRUE TRUE
#> 8_15 FALSE TRUE TRUE
#> 8_16 TRUE TRUE TRUE
#> 8_17 TRUE TRUE TRUE
#> 8_18 FALSE TRUE TRUE
#> 8_19 FALSE TRUE TRUE
#> 8_20 FALSE TRUE TRUE
#> 9_10 FALSE TRUE TRUE
#> 9_11 FALSE TRUE TRUE
#> 9_12 FALSE TRUE TRUE
#> 9_13 FALSE TRUE TRUE
#> 9_14 FALSE TRUE TRUE
#> 9_15 TRUE TRUE TRUE
#> 9_16 FALSE TRUE TRUE
#> 9_17 FALSE TRUE TRUE
#> 9_18 FALSE TRUE TRUE
#> 9_19 FALSE TRUE TRUE
#> 9_20 FALSE TRUE TRUE
#> 10_11 TRUE TRUE TRUE
#> 10_12 FALSE TRUE TRUE
#> 10_13 TRUE TRUE TRUE
#> 10_14 FALSE TRUE TRUE
#> 10_15 FALSE TRUE TRUE
#> 10_16 FALSE TRUE TRUE
#> 10_17 FALSE TRUE TRUE
#> 10_18 TRUE TRUE TRUE
#> 10_19 TRUE TRUE TRUE
#> 10_20 TRUE TRUE TRUE
#> 11_12 FALSE TRUE TRUE
#> 11_13 TRUE TRUE TRUE
#> 11_14 FALSE TRUE TRUE
#> 11_15 FALSE TRUE TRUE
#> 11_16 FALSE TRUE TRUE
#> 11_17 FALSE TRUE TRUE
#> 11_18 TRUE TRUE TRUE
#> 11_19 TRUE TRUE TRUE
#> 11_20 TRUE TRUE TRUE
#> 12_13 FALSE TRUE TRUE
#> 12_14 TRUE TRUE TRUE
#> 12_15 FALSE TRUE TRUE
#> 12_16 TRUE TRUE TRUE
#> 12_17 TRUE TRUE TRUE
#> 12_18 FALSE TRUE TRUE
#> 12_19 FALSE TRUE TRUE
#> 12_20 FALSE TRUE TRUE
#> 13_14 FALSE TRUE TRUE
#> 13_15 FALSE TRUE TRUE
#> 13_16 FALSE TRUE TRUE
#> 13_17 FALSE TRUE TRUE
#> 13_18 TRUE TRUE TRUE
#> 13_19 TRUE TRUE TRUE
#> 13_20 TRUE TRUE TRUE
#> 14_15 FALSE TRUE TRUE
#> 14_16 TRUE TRUE TRUE
#> 14_17 TRUE TRUE TRUE
#> 14_18 FALSE TRUE TRUE
#> 14_19 FALSE TRUE TRUE
#> 14_20 FALSE TRUE TRUE
#> 15_16 FALSE TRUE TRUE
#> 15_17 FALSE TRUE TRUE
#> 15_18 FALSE TRUE TRUE
#> 15_19 FALSE TRUE TRUE
#> 15_20 FALSE TRUE TRUE
#> 16_17 TRUE TRUE TRUE
#> 16_18 FALSE TRUE TRUE
#> 16_19 FALSE TRUE TRUE
#> 16_20 FALSE TRUE TRUE
#> 17_18 FALSE TRUE TRUE
#> 17_19 FALSE TRUE TRUE
#> 17_20 FALSE TRUE TRUE
#> 18_19 TRUE TRUE TRUE
#> 18_20 TRUE TRUE TRUE
#> 19_20 TRUE TRUE TRUE
#>
#> $freq_item_pw_membership
#> 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_10 1_11 1_12 1_13 1_14
#> 2 2 1 2 2 2 2 2 3 3 2 3 2
#> 1_15 1_16 1_17 1_18 1_19 1_20 2_3 2_4 2_5 2_6 2_7 2_8 2_9
#> 2 2 2 3 3 3 2 2 2 2 3 2 3
#> 2_10 2_11 2_12 2_13 2_14 2_15 2_16 2_17 2_18 2_19 2_20 3_4 3_5
#> 2 2 2 2 2 3 2 2 2 2 2 1 3
#> 3_6 3_7 3_8 3_9 3_10 3_11 3_12 3_13 3_14 3_15 3_16 3_17 3_18
#> 3 2 3 2 2 2 3 2 3 2 3 3 2
#> 3_19 3_20 4_5 4_6 4_7 4_8 4_9 4_10 4_11 4_12 4_13 4_14 4_15
#> 2 2 1 1 2 1 2 1 1 1 1 1 2
#> 4_16 4_17 4_18 4_19 4_20 5_6 5_7 5_8 5_9 5_10 5_11 5_12 5_13
#> 1 1 1 1 1 3 2 3 2 2 2 3 2
#> 5_14 5_15 5_16 5_17 5_18 5_19 5_20 6_7 6_8 6_9 6_10 6_11 6_12
#> 3 2 3 3 2 2 2 2 3 2 2 2 3
#> 6_13 6_14 6_15 6_16 6_17 6_18 6_19 6_20 7_8 7_9 7_10 7_11 7_12
#> 2 3 2 3 3 2 2 2 2 3 2 2 2
#> 7_13 7_14 7_15 7_16 7_17 7_18 7_19 7_20 8_9 8_10 8_11 8_12 8_13
#> 2 2 3 2 2 2 2 2 2 2 2 3 2
#> 8_14 8_15 8_16 8_17 8_18 8_19 8_20 9_10 9_11 9_12 9_13 9_14 9_15
#> 3 2 3 3 2 2 2 2 2 2 2 2 3
#> 9_16 9_17 9_18 9_19 9_20 10_11 10_12 10_13 10_14 10_15 10_16 10_17 10_18
#> 2 2 2 2 2 3 2 3 2 2 2 2 3
#> 10_19 10_20 11_12 11_13 11_14 11_15 11_16 11_17 11_18 11_19 11_20 12_13 12_14
#> 3 3 2 3 2 2 2 2 3 3 3 2 3
#> 12_15 12_16 12_17 12_18 12_19 12_20 13_14 13_15 13_16 13_17 13_18 13_19 13_20
#> 2 3 3 2 2 2 2 2 2 2 3 3 3
#> 14_15 14_16 14_17 14_18 14_19 14_20 15_16 15_17 15_18 15_19 15_20 16_17 16_18
#> 2 3 3 2 2 2 2 2 2 2 2 3 2
#> 16_19 16_20 17_18 17_19 17_20 18_19 18_20 19_20
#> 2 2 2 2 2 3 3 3
#>
#> $confusion_matrix
#> $confusion_matrix$`Hclu%Greedy`
#> a b c d
#> 55 4 116 15
#>
#> $confusion_matrix$`Hclu%Walktrap`
#> a b c d
#> 59 0 131 0
#>
#> $confusion_matrix$`Greedy%Walktrap`
#> a b c d
#> 171 0 19 0
#>
#>
#> $bioregionalization_comparison
#> bioregionalization_comparison rand jaccard
#> 1 Hclu%Greedy 0.3684211 0.3142857
#> 2 Hclu%Walktrap 0.3105263 0.3105263
#> 3 Greedy%Walktrap 0.9000000 0.9000000
#>
#> attr(,"class")
#> [1] "bioregion.bioregionalization.comparison"
#> [2] "list"
# Find out which bioregionalizations are most representative
compare_bioregionalizations(compare_df,
cor_frequency = TRUE)
#> 2025-01-17 10:28:45.141203 - Computing pairwise membership comparisons for each bioregionalization...
#> 2025-01-17 10:28:45.142715 - Comparing memberships among bioregionalizations...
#> 2025-01-17 10:28:45.143345 - Computing Rand index...
#> 2025-01-17 10:28:45.143678 - Computing Jaccard index...
#> 2025-01-17 10:28:45.143987 - Computing the correlation between each bioregionalization and the vector of frequency of pairwise membership...
#> $args
#> $args$indices
#> [1] "rand" "jaccard"
#>
#> $args$cor_frequency
#> [1] TRUE
#>
#> $args$store_pairwise_membership
#> [1] TRUE
#>
#> $args$store_confusion_matrix
#> [1] TRUE
#>
#>
#> $inputs
#> number_items number_bioregionalizations
#> 20 3
#>
#> $pairwise_membership
#> Hclu Greedy Walktrap
#> 1_2 FALSE TRUE TRUE
#> 1_3 FALSE TRUE TRUE
#> 1_4 FALSE FALSE TRUE
#> 1_5 FALSE TRUE TRUE
#> 1_6 FALSE TRUE TRUE
#> 1_7 FALSE TRUE TRUE
#> 1_8 FALSE TRUE TRUE
#> 1_9 FALSE TRUE TRUE
#> 1_10 TRUE TRUE TRUE
#> 1_11 TRUE TRUE TRUE
#> 1_12 FALSE TRUE TRUE
#> 1_13 TRUE TRUE TRUE
#> 1_14 FALSE TRUE TRUE
#> 1_15 FALSE TRUE TRUE
#> 1_16 FALSE TRUE TRUE
#> 1_17 FALSE TRUE TRUE
#> 1_18 TRUE TRUE TRUE
#> 1_19 TRUE TRUE TRUE
#> 1_20 TRUE TRUE TRUE
#> 2_3 FALSE TRUE TRUE
#> 2_4 TRUE FALSE TRUE
#> 2_5 FALSE TRUE TRUE
#> 2_6 FALSE TRUE TRUE
#> 2_7 TRUE TRUE TRUE
#> 2_8 FALSE TRUE TRUE
#> 2_9 TRUE TRUE TRUE
#> 2_10 FALSE TRUE TRUE
#> 2_11 FALSE TRUE TRUE
#> 2_12 FALSE TRUE TRUE
#> 2_13 FALSE TRUE TRUE
#> 2_14 FALSE TRUE TRUE
#> 2_15 TRUE TRUE TRUE
#> 2_16 FALSE TRUE TRUE
#> 2_17 FALSE TRUE TRUE
#> 2_18 FALSE TRUE TRUE
#> 2_19 FALSE TRUE TRUE
#> 2_20 FALSE TRUE TRUE
#> 3_4 FALSE FALSE TRUE
#> 3_5 TRUE TRUE TRUE
#> 3_6 TRUE TRUE TRUE
#> 3_7 FALSE TRUE TRUE
#> 3_8 TRUE TRUE TRUE
#> 3_9 FALSE TRUE TRUE
#> 3_10 FALSE TRUE TRUE
#> 3_11 FALSE TRUE TRUE
#> 3_12 TRUE TRUE TRUE
#> 3_13 FALSE TRUE TRUE
#> 3_14 TRUE TRUE TRUE
#> 3_15 FALSE TRUE TRUE
#> 3_16 TRUE TRUE TRUE
#> 3_17 TRUE TRUE TRUE
#> 3_18 FALSE TRUE TRUE
#> 3_19 FALSE TRUE TRUE
#> 3_20 FALSE TRUE TRUE
#> 4_5 FALSE FALSE TRUE
#> 4_6 FALSE FALSE TRUE
#> 4_7 TRUE FALSE TRUE
#> 4_8 FALSE FALSE TRUE
#> 4_9 TRUE FALSE TRUE
#> 4_10 FALSE FALSE TRUE
#> 4_11 FALSE FALSE TRUE
#> 4_12 FALSE FALSE TRUE
#> 4_13 FALSE FALSE TRUE
#> 4_14 FALSE FALSE TRUE
#> 4_15 TRUE FALSE TRUE
#> 4_16 FALSE FALSE TRUE
#> 4_17 FALSE FALSE TRUE
#> 4_18 FALSE FALSE TRUE
#> 4_19 FALSE FALSE TRUE
#> 4_20 FALSE FALSE TRUE
#> 5_6 TRUE TRUE TRUE
#> 5_7 FALSE TRUE TRUE
#> 5_8 TRUE TRUE TRUE
#> 5_9 FALSE TRUE TRUE
#> 5_10 FALSE TRUE TRUE
#> 5_11 FALSE TRUE TRUE
#> 5_12 TRUE TRUE TRUE
#> 5_13 FALSE TRUE TRUE
#> 5_14 TRUE TRUE TRUE
#> 5_15 FALSE TRUE TRUE
#> 5_16 TRUE TRUE TRUE
#> 5_17 TRUE TRUE TRUE
#> 5_18 FALSE TRUE TRUE
#> 5_19 FALSE TRUE TRUE
#> 5_20 FALSE TRUE TRUE
#> 6_7 FALSE TRUE TRUE
#> 6_8 TRUE TRUE TRUE
#> 6_9 FALSE TRUE TRUE
#> 6_10 FALSE TRUE TRUE
#> 6_11 FALSE TRUE TRUE
#> 6_12 TRUE TRUE TRUE
#> 6_13 FALSE TRUE TRUE
#> 6_14 TRUE TRUE TRUE
#> 6_15 FALSE TRUE TRUE
#> 6_16 TRUE TRUE TRUE
#> 6_17 TRUE TRUE TRUE
#> 6_18 FALSE TRUE TRUE
#> 6_19 FALSE TRUE TRUE
#> 6_20 FALSE TRUE TRUE
#> 7_8 FALSE TRUE TRUE
#> 7_9 TRUE TRUE TRUE
#> 7_10 FALSE TRUE TRUE
#> 7_11 FALSE TRUE TRUE
#> 7_12 FALSE TRUE TRUE
#> 7_13 FALSE TRUE TRUE
#> 7_14 FALSE TRUE TRUE
#> 7_15 TRUE TRUE TRUE
#> 7_16 FALSE TRUE TRUE
#> 7_17 FALSE TRUE TRUE
#> 7_18 FALSE TRUE TRUE
#> 7_19 FALSE TRUE TRUE
#> 7_20 FALSE TRUE TRUE
#> 8_9 FALSE TRUE TRUE
#> 8_10 FALSE TRUE TRUE
#> 8_11 FALSE TRUE TRUE
#> 8_12 TRUE TRUE TRUE
#> 8_13 FALSE TRUE TRUE
#> 8_14 TRUE TRUE TRUE
#> 8_15 FALSE TRUE TRUE
#> 8_16 TRUE TRUE TRUE
#> 8_17 TRUE TRUE TRUE
#> 8_18 FALSE TRUE TRUE
#> 8_19 FALSE TRUE TRUE
#> 8_20 FALSE TRUE TRUE
#> 9_10 FALSE TRUE TRUE
#> 9_11 FALSE TRUE TRUE
#> 9_12 FALSE TRUE TRUE
#> 9_13 FALSE TRUE TRUE
#> 9_14 FALSE TRUE TRUE
#> 9_15 TRUE TRUE TRUE
#> 9_16 FALSE TRUE TRUE
#> 9_17 FALSE TRUE TRUE
#> 9_18 FALSE TRUE TRUE
#> 9_19 FALSE TRUE TRUE
#> 9_20 FALSE TRUE TRUE
#> 10_11 TRUE TRUE TRUE
#> 10_12 FALSE TRUE TRUE
#> 10_13 TRUE TRUE TRUE
#> 10_14 FALSE TRUE TRUE
#> 10_15 FALSE TRUE TRUE
#> 10_16 FALSE TRUE TRUE
#> 10_17 FALSE TRUE TRUE
#> 10_18 TRUE TRUE TRUE
#> 10_19 TRUE TRUE TRUE
#> 10_20 TRUE TRUE TRUE
#> 11_12 FALSE TRUE TRUE
#> 11_13 TRUE TRUE TRUE
#> 11_14 FALSE TRUE TRUE
#> 11_15 FALSE TRUE TRUE
#> 11_16 FALSE TRUE TRUE
#> 11_17 FALSE TRUE TRUE
#> 11_18 TRUE TRUE TRUE
#> 11_19 TRUE TRUE TRUE
#> 11_20 TRUE TRUE TRUE
#> 12_13 FALSE TRUE TRUE
#> 12_14 TRUE TRUE TRUE
#> 12_15 FALSE TRUE TRUE
#> 12_16 TRUE TRUE TRUE
#> 12_17 TRUE TRUE TRUE
#> 12_18 FALSE TRUE TRUE
#> 12_19 FALSE TRUE TRUE
#> 12_20 FALSE TRUE TRUE
#> 13_14 FALSE TRUE TRUE
#> 13_15 FALSE TRUE TRUE
#> 13_16 FALSE TRUE TRUE
#> 13_17 FALSE TRUE TRUE
#> 13_18 TRUE TRUE TRUE
#> 13_19 TRUE TRUE TRUE
#> 13_20 TRUE TRUE TRUE
#> 14_15 FALSE TRUE TRUE
#> 14_16 TRUE TRUE TRUE
#> 14_17 TRUE TRUE TRUE
#> 14_18 FALSE TRUE TRUE
#> 14_19 FALSE TRUE TRUE
#> 14_20 FALSE TRUE TRUE
#> 15_16 FALSE TRUE TRUE
#> 15_17 FALSE TRUE TRUE
#> 15_18 FALSE TRUE TRUE
#> 15_19 FALSE TRUE TRUE
#> 15_20 FALSE TRUE TRUE
#> 16_17 TRUE TRUE TRUE
#> 16_18 FALSE TRUE TRUE
#> 16_19 FALSE TRUE TRUE
#> 16_20 FALSE TRUE TRUE
#> 17_18 FALSE TRUE TRUE
#> 17_19 FALSE TRUE TRUE
#> 17_20 FALSE TRUE TRUE
#> 18_19 TRUE TRUE TRUE
#> 18_20 TRUE TRUE TRUE
#> 19_20 TRUE TRUE TRUE
#>
#> $freq_item_pw_membership
#> 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_10 1_11 1_12 1_13 1_14
#> 2 2 1 2 2 2 2 2 3 3 2 3 2
#> 1_15 1_16 1_17 1_18 1_19 1_20 2_3 2_4 2_5 2_6 2_7 2_8 2_9
#> 2 2 2 3 3 3 2 2 2 2 3 2 3
#> 2_10 2_11 2_12 2_13 2_14 2_15 2_16 2_17 2_18 2_19 2_20 3_4 3_5
#> 2 2 2 2 2 3 2 2 2 2 2 1 3
#> 3_6 3_7 3_8 3_9 3_10 3_11 3_12 3_13 3_14 3_15 3_16 3_17 3_18
#> 3 2 3 2 2 2 3 2 3 2 3 3 2
#> 3_19 3_20 4_5 4_6 4_7 4_8 4_9 4_10 4_11 4_12 4_13 4_14 4_15
#> 2 2 1 1 2 1 2 1 1 1 1 1 2
#> 4_16 4_17 4_18 4_19 4_20 5_6 5_7 5_8 5_9 5_10 5_11 5_12 5_13
#> 1 1 1 1 1 3 2 3 2 2 2 3 2
#> 5_14 5_15 5_16 5_17 5_18 5_19 5_20 6_7 6_8 6_9 6_10 6_11 6_12
#> 3 2 3 3 2 2 2 2 3 2 2 2 3
#> 6_13 6_14 6_15 6_16 6_17 6_18 6_19 6_20 7_8 7_9 7_10 7_11 7_12
#> 2 3 2 3 3 2 2 2 2 3 2 2 2
#> 7_13 7_14 7_15 7_16 7_17 7_18 7_19 7_20 8_9 8_10 8_11 8_12 8_13
#> 2 2 3 2 2 2 2 2 2 2 2 3 2
#> 8_14 8_15 8_16 8_17 8_18 8_19 8_20 9_10 9_11 9_12 9_13 9_14 9_15
#> 3 2 3 3 2 2 2 2 2 2 2 2 3
#> 9_16 9_17 9_18 9_19 9_20 10_11 10_12 10_13 10_14 10_15 10_16 10_17 10_18
#> 2 2 2 2 2 3 2 3 2 2 2 2 3
#> 10_19 10_20 11_12 11_13 11_14 11_15 11_16 11_17 11_18 11_19 11_20 12_13 12_14
#> 3 3 2 3 2 2 2 2 3 3 3 2 3
#> 12_15 12_16 12_17 12_18 12_19 12_20 13_14 13_15 13_16 13_17 13_18 13_19 13_20
#> 2 3 3 2 2 2 2 2 2 2 3 3 3
#> 14_15 14_16 14_17 14_18 14_19 14_20 15_16 15_17 15_18 15_19 15_20 16_17 16_18
#> 2 3 3 2 2 2 2 2 2 2 2 3 2
#> 16_19 16_20 17_18 17_19 17_20 18_19 18_20 19_20
#> 2 2 2 2 2 3 3 3
#>
#> $bioregionalization_freq_cor
#> Hclu Greedy Walktrap
#> 0.8507343 0.5855169 0.0000000
#>
#> $confusion_matrix
#> $confusion_matrix$`Hclu%Greedy`
#> a b c d
#> 55 4 116 15
#>
#> $confusion_matrix$`Hclu%Walktrap`
#> a b c d
#> 59 0 131 0
#>
#> $confusion_matrix$`Greedy%Walktrap`
#> a b c d
#> 171 0 19 0
#>
#>
#> $bioregionalization_comparison
#> bioregionalization_comparison rand jaccard
#> 1 Hclu%Greedy 0.3684211 0.3142857
#> 2 Hclu%Walktrap 0.3105263 0.3105263
#> 3 Greedy%Walktrap 0.9000000 0.9000000
#>
#> attr(,"class")
#> [1] "bioregion.bioregionalization.comparison"
#> [2] "list"