Convert dissimilarity metrics to similarity metrics
Source:R/similarity_dissimilarity_conversion.R
dissimilarity_to_similarity.Rd
This function converts a data.frame
of dissimilarity metrics (beta diversity)
between sites to similarity metrics.
Arguments
- dissimilarity
the output object from
dissimilarity()
orsimilarity_to_dissimilarity()
.- include_formula
a
boolean
indicating if the metrics based on your own formula(s) should be converted (see Details). This argument is set toTRUE
by default.
Value
A data.frame
with additional class
bioregion.pairwise.metric
, providing similarity
metric(s) between each pair of sites based on a dissimilarity object.
Note
The behavior of this function changes depending on column names. Columns
Site1
and Site2
are copied identically. If there are columns called
a
, b
, c
, A
, B
, C
they will also be copied identically. If there
are columns based on your own formula (argument formula
in
dissimilarity()
) or not in the original list of dissimilarity metrics
(argument metrics
in dissimilarity()
) and if the argument
include_formula
is set to FALSE
, they will also be copied identically.
Otherwise there are going to be converted like they other columns (default
behavior).
If a column is called Euclidean
, the similarity will be calculated based
on the following formula:
Euclidean similarity = 1 / (1 - Euclidean distance)
Otherwise, all other columns will be transformed into dissimilarity with the following formula:
similarity = 1 - dissimilarity
Author
Maxime Lenormand (maxime.lenormand@inrae.fr)
Boris Leroy (leroy.boris@gmail.com)
Pierre Denelle (pierre.denelle@gmail.com)
Examples
comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)
dissimil <- dissimilarity(comat, metric = "all")
dissimil
#> Data.frame of dissimilarity between sites
#> - Total number of sites: 5
#> - Total number of species: 10
#> - Number of rows: 10
#> - Number of dissimilarity metrics: 7
#>
#>
#> Site1 Site2 Jaccard Jaccardturn Sorensen Simpson Bray Brayturn
#> 2 Site1 Site2 0.2000000 0.0000000 0.11111111 0.0000000 0.6404855 0.5799893
#> 3 Site1 Site3 0.3000000 0.2222222 0.17647059 0.1250000 0.4874931 0.1618182
#> 4 Site1 Site4 0.1111111 0.0000000 0.05882353 0.0000000 0.6908825 0.6047382
#> 5 Site1 Site5 0.3000000 0.2222222 0.17647059 0.1250000 0.7916129 0.4634551
#> 8 Site2 Site3 0.1000000 0.0000000 0.05263158 0.0000000 0.6685753 0.5527273
#> 9 Site2 Site4 0.1000000 0.0000000 0.05263158 0.0000000 0.4845955 0.4420200
#> 10 Site2 Site5 0.1000000 0.0000000 0.05263158 0.0000000 0.9020639 0.7990033
#> 14 Site3 Site4 0.2000000 0.2000000 0.11111111 0.1111111 0.7544379 0.6981818
#> 15 Site3 Site5 0.2000000 0.2000000 0.11111111 0.1111111 0.6427732 0.4950166
#> 20 Site4 Site5 0.2000000 0.2000000 0.11111111 0.1111111 0.8821396 0.7840532
#> Euclidean a b c A B C
#> 2 1145.6845 8 0 2 785 1713 1084
#> 3 1021.9335 7 1 2 922 1576 178
#> 4 1219.3958 8 0 1 634 1864 970
#> 5 1258.6906 7 1 2 323 2175 279
#> 8 861.1231 9 1 0 492 1377 608
#> 9 807.3543 9 1 0 895 974 709
#> 10 941.3071 9 1 0 121 1748 481
#> 14 897.8764 8 1 1 332 768 1272
#> 15 502.0299 8 1 1 304 796 298
#> 20 910.9874 8 1 1 130 1474 472
similarity <- dissimilarity_to_similarity(dissimil)
similarity
#> Data.frame of similarity between sites
#> - Total number of sites: 5
#> - Total number of species: 10
#> - Number of rows: 10
#> - Number of similarity metrics: 7
#>
#>
#> Site1 Site2 Jaccard Jaccardturn Sorensen Simpson Bray Brayturn
#> 2 Site1 Site2 0.8000000 1.0000000 0.8888889 1.0000000 0.35951454 0.4200107
#> 3 Site1 Site3 0.7000000 0.7777778 0.8235294 0.8750000 0.51250695 0.8381818
#> 4 Site1 Site4 0.8888889 1.0000000 0.9411765 1.0000000 0.30911750 0.3952618
#> 5 Site1 Site5 0.7000000 0.7777778 0.8235294 0.8750000 0.20838710 0.5365449
#> 8 Site2 Site3 0.9000000 1.0000000 0.9473684 1.0000000 0.33142472 0.4472727
#> 9 Site2 Site4 0.9000000 1.0000000 0.9473684 1.0000000 0.51540455 0.5579800
#> 10 Site2 Site5 0.9000000 1.0000000 0.9473684 1.0000000 0.09793606 0.2009967
#> 14 Site3 Site4 0.8000000 0.8000000 0.8888889 0.8888889 0.24556213 0.3018182
#> 15 Site3 Site5 0.8000000 0.8000000 0.8888889 0.8888889 0.35722679 0.5049834
#> 20 Site4 Site5 0.8000000 0.8000000 0.8888889 0.8888889 0.11786038 0.2159468
#> Euclidean a b c A B C
#> 2 0.0008720795 8 0 2 785 1713 1084
#> 3 0.0009775807 7 1 2 922 1576 178
#> 4 0.0008194063 8 0 1 634 1864 970
#> 5 0.0007938457 7 1 2 323 2175 279
#> 8 0.0011599272 9 1 0 492 1377 608
#> 9 0.0012370813 9 1 0 895 974 709
#> 10 0.0010612252 9 1 0 121 1748 481
#> 14 0.0011125000 8 1 1 332 768 1272
#> 15 0.0019879535 8 1 1 304 796 298
#> 20 0.0010965064 8 1 1 130 1474 472